Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate.

نویسندگان

  • Henry Lin
  • George N Bennett
  • Ka-Yiu San
چکیده

Most reported efforts to enhance production of the industrially valuable specialty chemical succinate have been done under anaerobic conditions, where E. coli undergoes mixed-acid fermentation. These efforts have often been hampered by the limitations of NADH availability, poor cell growth, and slow production. An aerobic succinate production system was strategically designed that allows E. coli to produce and accumulate succinate efficiently and substantially as a product under absolute aerobic conditions. Mutations in the tricarboxylic acid cycle (sdhAB, icd, iclR) and acetate pathways (poxB, ackA-pta) of E. coli were created to construct the glyoxylate cycle for aerobic succinate production. Experiments in flask studies showed that 14.28 mM of succinate could be produced aerobically with a yield of 0.344 mole/mole using 55 mM glucose. In aerobic batch reactor studies, succinate production rate was faster, reaching 0.5 mole/mole in 24 h with a concentration of 22.12 mM; further cultivation showed that succinate production reached 43 mM with a yield of 0.7. There was also substantial pyruvate and TCA cycle C(6) intermediate accumulation in the mutant. The results suggest that more metabolic engineering improvements can be made to this system to make aerobic succinate production more efficient. Nevertheless, this aerobic succinate production system provides the first platform for enhancing succinate production aerobically in E. coli based on the creation of a new aerobic central metabolic network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield.

The potential to produce succinate aerobically in Escherichia coli would offer great advantages over anaerobic fermentation in terms of faster biomass generation, carbon throughput, and product formation. Genetic manipulations were performed on two aerobic succinate production systems to increase their succinate yield and productivity. One of the aerobic succinate production systems developed e...

متن کامل

Elementary Mode Analysis for the Rational Design of Efficient Succinate Conversion from Glycerol by Escherichia coli

By integrating the restriction of oxygen and redox sensing/regulatory system, elementary mode analysis was used to predict the metabolic potential of glycerol for succinate production by E. coli under either anaerobic or aerobic conditions. It was found that although the theoretical maximum succinate yields under both anaerobic and aerobic conditions are 1.0 mol/mol glycerol, the aerobic condit...

متن کامل

Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum

Corynebacterium glutamicum, an established microbial cell factory for the biotechnological production of amino acids, was recently genetically engineered for aerobic succinate production from glucose in minimal medium. In this work, the corresponding strains were transformed with plasmid pVWEx1-glpFKD coding for glycerol utilization genes from Escherichia coli. This plasmid had previously been ...

متن کامل

Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions.

An aerobic succinate production system developed by Lin et al. (Metab Eng, in press) is capable of achieving the maximum theoretical succinate yield of 1.0 mol/mol glucose for aerobic conditions. It also exhibits high succinate productivity. This succinate production system is a mutant E. coli strain with five pathways inactivated: DeltasdhAB, Delta(ackA-pta), DeltapoxB, DeltaiclR, and Deltapts...

متن کامل

Succinate Overproduction: A Case Study of Computational Strain Design Using a Comprehensive Escherichia coli Kinetic Model

Computational strain-design prediction accuracy has been the focus for many recent efforts through the selective integration of kinetic information into metabolic models. In general, kinetic model prediction quality is determined by the range and scope of genetic and/or environmental perturbations used during parameterization. In this effort, we apply the k-OptForce procedure on a kinetic model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 89 2  شماره 

صفحات  -

تاریخ انتشار 2005